ダイズのアレルゲンたん白質の遺伝子のクローニング

Cloning of the Genes for an Allergenic Protein in Soybean

高野哲夫・野口勇（東京大学農学部附属農場）
李陶・喜多村啓介（農林水産省農業研究センター）

Tetsuo TAKANO1, Tao LI2, Isamu NOGUCHI1 and Keisuke KITAMURA2
1 University Farm, Faculty of Agriculture, The University of Tokyo, Tanashi 188
2 National Agriculture Research Center, Tsukuba 305

ABSTRACT

Gly m Bd 30K is a major allergenic protein in soybean seed. We have isolated two cDNA clones for Gly m Bd 30K and we screened a genomic library of soybean using a cDNA clone as a probe. Twelve positive clones were obtained. Among them, B7 and B9 were identified to contain the genes which have homology to Gly m Bd 30K genes. DNA fragments (PB7, PB9 and PSU) which contain coding region of the protein were amplified by PCR using phage DNA of B7 and B9, and genomic DNA of variety ‘Suzuyutaka’ as templates. They were cloned and sequenced. Comparing amino acid and nucleotide sequences of the PB7, PB9 and PSU, it was clarified that PB8 is the different gene from PB7 and PSU. The result of genomic southern hybridization of the soybean varieties using Gly m Bd 30K cDNA as a probe also suggested the presence of two copy of the gene. Rep. Soy Protein Res. Com., Jpn. 16, 58-61, 1995.

実験方法

Gly m Bd 30K cDNAのクローニング

大豆品種スズユタカの登熟種子からmRNAを精製した。P34cDNAの3’末端の塩基配列に相補的な30塩基のオリゴヌクレオチドを合成し，これをプライマーとして用いてcDNAを合成した。cDNAをプラスマドpT7T3 18U（ファルマシア）のEcoRIサイトに挿入し，ミニライブラリーを作製した。ライブラリーのクローニングライブラリーをランダムに取って，プラスマドDNAを精製し，制限酵素分析によって，スクリーニングを行った。

Gly m Bd 30Kの遺伝子のクローニング

Gly m Bd 30KのcDNA（2-22）をプロープとして，Clontech社のダイズ・ゲノミックライブラリー（品種：Resnik）をスクリーニングした。ポジティブなクローニングのファージDNAを精製し，定法に従って制限酵素
素による切断、サザンハイブリダイゼーションによる分析を行った。必要に応じてプラスミドへのサブクローニング、PCRによる増幅を行い、塩基配列を決定した。

サザンハイブリダイゼーション
大豆6品種（系）（伊予大豆、緑色豆性、東山170号、関系5、赤花および上村野在来）の緑皮からゲノミックDNAを精製した。制限酵素BamHI、EcoRI、HindIIIで切断したゲノミックDNA各4μgを電気泳動した後にナイロンメッシュプレンにプロッティングし、ECL法（アマシャム）でラベルしたGly m Bd 30KのcDNA (2-22)をプローブとしてハイブリダイゼーションを行った。

結果および考察
ランダムに選んだクローンのプラスミドDNAを制限酵素で切断し、P34cDNAの制限酵素地図と比較した。その結果、P34cDNAと同一と思われるクローン：1-24, 2-22が得られたので、部分的に塩基配列を決定したところ、1-24はP34cDNAより5'方向に約1400bp長く、2-22は約30bp5'側の短いが、ともにP34cDNAと相同な部分を含み、Gly m Bd 30KのcDNAであることが解った。

Gly m Bd 30K cDNA (2-22)をプローブとしてゲノミックライブラリをスクリーニングしてポジティブなクローンを12個得た。そのうちのB7, B9の2つのクローンについて解析を行った。B9のファージDNAを録型として、Gly m Bd 30K cDNAの両端部分をプライマーとするPCRを行ったところ、B9でcDNAよりも約500bp大きなDNA断片（PB9）が得られた。また、PB7のファージDNAと品種スズユタカのゲノミックDNAとを録型として同様にPCRを行うと、PB9よりも約100bp小さなDNA断片（PB7, PSU）が得られ

Fig. 1. Structure of cDNAs for Gly m Bd 30K. White boxes indicate the coding region for mature Gly m Bd 30K protein.

Fig. 2. Structure of the genes for Gly m Bd 30K. Black boxes indicate introns. The size of introns are for PB9.
た。そこでこれらをTAクローニングベクター（Invitrogen）にクローニングしてディレクションシリーズを作製し、塩基配列を決定した。

PB7, PB9とPSUはともにGly m Bd 30K cDNAのPCRで増幅される領域をすべて含み、Gly m Bd 30K遺伝子の一部であると推定された。PB9には106bp、102bp、312bpの3つのイントロンが認められた（Fig. 1）。PB7とPSUも同じ位置に3つのイントロンを持っていたが、3番目のイントロンがPB9よりも100bp短かった。また、イントロンの両端の配列はすべてGT-AGルールに合致していた。

PB7, PB9, PSUの翻訳領域、およびP34cDNAの4クローンの同相性を比較すると、PSUとP34とが塩基配列で98％、アミノ酸配列で97％の同相性を示すのに

<table>
<thead>
<tr>
<th></th>
<th>PB7</th>
<th>PSU</th>
<th>Bd 30K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Kaliniski et al. (1990))</td>
</tr>
<tr>
<td>PB9</td>
<td>92％</td>
<td>89％</td>
<td>89％</td>
</tr>
<tr>
<td></td>
<td>(85％)</td>
<td>(82％)</td>
<td>(81％)</td>
</tr>
<tr>
<td>PB7</td>
<td>99％</td>
<td>99％</td>
<td>98％</td>
</tr>
<tr>
<td></td>
<td>(97％)</td>
<td>(97％)</td>
<td>(98％)</td>
</tr>
<tr>
<td>PSU</td>
<td>98％</td>
<td>98％</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(97％)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

対して、PB9と他の2つとの同相性は塩基配列で約90％、アミノ酸配列で約80％と低かった（Table 1）。

大豆6品種についてゲノミックサザンハイブリダイゼーションを行ったところ、これまでに解析したGly m Bd 30K遺伝子の内部に切断部位を持たないEcoRIとHindIIIを用いた場合に、エジャーな2本のバンドが検出された。このことからも、大豆ゲノムに同相性の高い遺伝子が2コピーあることが強く示唆された。
また、EcoRIを用いた場合にRFLPが観察された。

サザンハイブリダイゼーションによる分析の他に、我々は抗Gly m Bd 30K抗体を用いたSDS-PAGE・イムノプロット法によって、多数の大豆品種、γ線照射したM2種子、ツルマメの系統などを調査したが、Gly m Bd 30Kが著しく低下した変異やバンドの移動度が変化した変異は認められなかった。したがって、既存の遺伝子を導入することによってこのたん白質を遺伝的に低減した大豆品種を育成することはできないので、遺伝子操作を利用した育種が期待される。現在、パーティクルガンを用いた大豆の形質転換について検討を進めており、最初にGly m Bd 30Kのアンチセンス鎖の導入を試みる予定である。

文 献

1) Ogawa T, Bando N, Tsuji H, Okajima K,

6) 李 陶，高野 哲夫，日浦華子，喜多村啓介（1995）：豆類における大豆アレルゲンタンパク質Bd 30Kおよびその遺伝子の分布．育種学雑誌，*45*, 別1, 268.